10th International Drainage Workshop of ICID 6-11, July 2008, Helsinki - Tallinn

Nutrient load to surface waters from human activities, in 2005

Phosphorus

Nitrogen

Data fom Finnish Environment Institute

Subsurface drainage in Finland

Data from Field Drainage Association

Objectives

- Runoff generation and nutrient transport under actual field conditions
- Contribution of subsurface drainage to N, P and soil losses
- Seasonal and event-scale characteristics of drain flow and nutrient transport via tile drains
- Pathways of water flow and nutrient transport to tile drains (preferential flow)

Modelling of water flow and nutrient transport, Lassi Warsta et al. (2008) in the proceedings of this workshop

Sjökulla experimental site

- Area of 3.3 ha
- Undulating topography, max. slope ~ 5%
- Clay fraction 38-90%
- Drainage system installed in 1951
- Drain depth 0.7-1.5 m, average spacing 13 m
- Annual small grain crops (barley, wheat, autumn rye)
- N fertilizer rate 95-120 kg ha⁻¹ a⁻¹
- P fertilizer rate 9-20 kg ha⁻¹ a⁻¹
- Autumn ploughing or stubble cultivation

Sjökulla experimental site

Measurements/ Data

Hydrometeorological data, 1994-1996, 1997-1999

- Weather variables
- Surface runoff and tile drainage discharge
- Groundwater level
- N, P and TSS
 concentrations in runoff
 waters
 - grab samples
 - automatic sampler
- Mineral N in the soil profile

Data on soil properties, Agrifood Research Finland MTT Laura Alakukku and Visa Nuutinen

- Macroporosity
- Saturated hydraulic conductivity
- Earthworm species, biomass and density
- Sampling points: above a drain, 2 m apart from a drain and in the middle of two drains
- Three layers:
 0-23 cm, 23-38 cm and 38-50 cm

Seasonal tile drain flow

Nitrogen transport via tile drains, average flow weighted concentrations and loads in different season

Year	Total N concentration mg/l			Tota			
	Jan-April	May-Aug	Sep-Dec	Jan-April	May-Aug	Sep-Dec	Jan-Dec
1995	4.1	45.6	4.0	0.6	10.8	1.5	12.9
1996	7.1	7.1	5.5	1.4	1.6	5.2	8.2
1998	7.3	13.4	5.4	3.1	7.2	3.0	13.3
1999	2.9			1.6			

TSS transport via tile drains, average flow weighted concentrations and loads in different season

Year	TSS concentration mg/l			TSS load kg/ha			
	Jan-April	May-Aug	Sep-Dec	Jan-April	May-Aug	Sep-Dec	Jan-Dec
1995	116	203	106	18	48	39	105
1996	573	642	1750	114	140	1649	1903
1998	365	856	1664	153	461	937	1551
1999	269			154			

N transport via tile drains, June 1998 fertilization 117 kg ha⁻¹, on 16 May

Rainfall 53 mm, tile drain flow 12.2 mm, surface runoff 0.3 mm Total N loss 5.1 kg ha⁻¹, $NO_2 + NO_3 - N$ loss 4.7 kg ha⁻¹

N transport via tile drains after tillage, October 1998

Rainfall 68 mm, tile drain flow 12.6 mm, surface runoff 33 mm Total N loss 1.27 kg ha⁻¹, NO₂+NO₃-N loss 0.32 kg ha⁻¹

P and TSS transport via tile drains after fertilization, June 1998

Rainfall 53 mm, tile drain flow 12.2 mm, surface runoff 0.3 mm Total P loss 0.120 kg ha⁻¹, TSS loss 149 kg ha⁻¹

P and TSS transport via tile drains after tillage, October 1998

Rainfall 68 mm, tile drain flow 12.6 mm, surface runoff 33 mm Total P loss 0.52 kg ha⁻¹, TSS loss 441 kg ha⁻¹

Summary, Sjökulla site

- High losses of nitrogen, <u>phosphorus</u> and <u>eroded soil</u> in tile drain outflow
- High <u>temporal variation</u> in transport routes (tile drain flow and surface runoff), flow volumes and losses
- Preferential flow is an important component in water flow and nutrient transport through tile drains
- Risk of losses via tile drains connected with cultivation measures (fertilization and tillage) followed by heavy rainfalls

Conclusions/ Future work

Generalization of the results to other fields?

- topography
- properties of clay soils (minerals, CEC, ...)
- drainage installation (trench backfill material)
- age of subsurface drainage system
- cultivation practice

Role of subsurface drainage in control of erosion and total P transport?

Modelling of erosion and particulate P transport via tile drains

Thank you!

