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ABSTRACT

An artificial neural network (NN) and time-series
models were applied to predicting the inflow of Lake
Péijanne. The main objective of the study was to test
the applicability of the neural network technique to
short-term runoff prediction. A NN consists of a set of
layered neurons and their weighted interconnections.
NNs generate adjust these weights by learning from
examples. Previous inflows, air temperatures, snow
water equivalents (SWEs), measured runoff values
from small experimental basins, and Julian days were
tested as input variables of the NN. The learning proc-
ess was successful and the network was used for in-
flow prediction. The predictions obtained by the NN
were compared with those made by time-series models
of type PAR, ARMA and SARIMA. The results seem
to indicate, that NNs are comparable to some advanced
time-series models in inflow forecasting.

INTRODUCTION

Conceptual rainfall-runoff models are often used as operational lake
inflow prediction models. Examples of such models are the HBV model
(Bergstrom 1976) and its variation WSFS (Vehvildinen 1994), which is
used operationally in Finland. Other conceptual models have also been
tested for the finnish conditions (Karvonen 1984). Water resource
managers, who have the responsibility of real-time operation of regulated
lakes and reservoirs, may also appreciate predictions made using



alternative methods. One possibility is to use time-series models, whose
applicability to the finnish conditions has been analyzed by Malve (1986)
and recently by Sirvi6 (1998).

A rather new innovation is to use an artificial neural networks (NNs) for
inflow prediction. The use of NNs has in the recent years got plenty of
interest in different fields. Applications of NNs in hydrology and water
resources engineering have been reported by, e.g., Daniell (1991),
Karunanithi et al.(1994), and Harkonen (1995).

The purpose of this work was to test the neural network method — back-
propagation NNs were used — and to compare the predictive capabilities of
an NN forecasting model to those of some time-series models.

HYDROLOGICAL DATA

Lake Piijénne is one of the biggest lakes in Finland with a catchment
area of 26480 km®. The areal percentage of lakes on the catchment is 19.5
measured at the outlet of the lake. Daily water levels and release values
from the years 1960...1990 were used in this study to calculate the daily
inflow values. Thus obtained net inflow values were smoothed according
to the procedure described by Kérkkiinen (1997).

Daily runoff data from three small experimental basins, numbers 41
(A=29,7 km?), 71 (A=9.4 km?), and 72 (A=5.39 km?) (Leppijirvi 1992),
located on the lake's watershed, was used as input data to the NN. Daily
average air temperatures from the Heinola and Jyviskyld synoptic weather
stations and areal snow water equivalent (SWE) data prepared by the
Hydrological office of the Finnish National Board of Waters and the
Environment were also used in the study.

The time step used in the study was five days forgetting the leap day in
order to obtain stable 73 steps in a year.

BACKPROPAGATION NEURAL NETWORKS

The backpropagation neural network has been the most widely used type
of a NN. It consists of an ordered set of layers: an input layer, a hidden
layer or layers, and an output layer (Figure 1.). A layer has all of its inputs
connected to the layer preceding it and all of its outputs connected to the
layer succeeding it. The inputs of the input layer are the inputs of the
whole network and the outputs of the output layer are the outputs of the
whole network. There are usually many neurons in each layer, each neuron
having multiple inputs and a single output. Each input "fibre" of a neuron
has an associated weight and the neuron is activated by a weighted sum of



all of its inputs (the activation value). The output of a neuron is a function
of the weighted sum (an activation function). As can be seen, the number
of weights even in a small NN may be quite large.
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Figure 1. A fully connected backpropagation neural network

Many methods exist for determining the weights of, i.e., training, a NN.
Usually the training is supervised, denoting that the output associated with
each input pattern in the training set is known beforehand. Typically the
training of a network is started by defining a network with an arbitrary —
but small — number of hidden layers, an arbitrary number of neurons in
each hidden layer, fixed connection topology — full connectivity is
typically used, and randomly selected values for the weights. The training
set is then presented to the network and the networks response to each
pattern is compared to the desired response. Mean square error (MSE) and
mean relative error (MRE) are used as measures in judging the overall
performance of the network (Karunanithi et al. 1994). In back-propagation
algorithm (see, e.g., Rumelhart et al. 1986) a gradient descent procedure is
utilized to iteratively update the values of the weights:

Aw (s +1)=-nd x; + 0Aw(s) (1)

where wj;  is the interconnecting weight between neuron j in the hidden
neuron and neuron i in the input layer
s is the iteration sweep on the training set
n is the learning factor, a value of 0.9 was used in this study
0; is a factor whose value depends on whether neuron j is an



output neuron or a hidden neuron
X; is the input value
o is the momentum factor, a value of 0 was used in this study

For neurons in the output layer
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where f is the activation function
net; is the activation value

ys-') is the desired response

y;  I1s the actual response

and for neurons in the hidden layer

j (dnet JZ 96 )

where ¢ is the number of neurons in the output layer

The algorithm is stopped when the total error is deemed sufficiently low.
At that point the NN can be said to have learnt the training set.

Following a good modeling practice only a portion of the training set is
used for determining the weights and the rest is used to validate the
resulting NN forecasting model. The network's capability to predict the
output of a previously unseen input pattern and the accuracy of the
prediction can be assessed by observing the training and the verification
period. A NN can also overtrain, i.e., learn the training data set better than
the underlying general problem. An overtrained network performs badly
outside of its training set, i.€., it does not have the ability to generalise. A
symptom of overtraining is, e.g., an increase in the MSE or MRE during
training. If overtraining is detected, the training should be stopped.

The distribution of the training patterns within the whole input space
can have an important effect on the learning and generalization capability
of a network. The extrapolation capabilities of NNs are usually not good



and thus the quality of the training pattern is important. This experience
suggests that a NN may not perform well in changing and/or new
hydrological conditions.

There are no real rules to determine the structure, number of the hidden
layers, number the neurons in the layers, the connection topology, of a NN
from the problem posed to it — remember that the back-propagation
algorithm only adjusts the weights. One indication for the modeling are the
dimensions of the input and output data. Also, in a general sense, the
longer the lag within the system and/or the more complex or far-away
relation between the input and output variables, the more complex the
structure should be. A trade-off exists in the deciding on the structure: a
too complex NN may overtrain more easily while a too simple NN may not
learn the necessary characteristics of the problem. The development and
use of a NN thus requires experience and experimentation.

TIME-SERIES MODELS
The performance of a NN inflow prediction model was compared to
three types of time-series models:

TypeI: A periodic autoregressive (PAR) model
Type II: ~ An autoregressive — moving average (ARMA) model with
deseasonalization

Type III: A seasonal autoregressive integrated moving average
(SARIMA) model

These models are described here only briefly. A detailed description is
given, e.g., by Noakes et al. (1985).
A PAR model

¢m (B)p (Zt‘;L - ;um) =a, (4)

where ¢, (B)p is the periodic autoregressive polynomial

p is the degree of the autoregressive polynomial
B is the backward shift operator: B’X, = X,_ i
Z; is the time-series value

A is the Box-Cox transformation parameter

U is the periodic mean inflow



is the noise term

is the time step, t=1,...,(N-1)s

is the period, m=1, ...,s

is the number of years

is the number of periods within a year
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assumes a period-dependent mean, variance, and autocorrelation function.
The polynomial ¢(B)” is defined as ¢(B)” =1-¢,B'—..—¢,B”.
A deseasonalization equation

ZF —
‘/Vt = ;ﬁ (5)
O-m
where W, is the deseasonalized time-series value
Om is the periodic standard deviation

was applied to the inflow data before fitting an ARMA model

9(B)"W, = 6(B)a, (©6)
where @(B)° is the autoregressive polynomial

6(B)* is the moving average polynomial

q is the degree of the moving average polynomial

to the inflow time-series.

Differentiation
D
Y,=(1-B)"(1-B*) (z} - ) )
where d is the degree of the differentiation polynomial
D is the degree of the seasonal differentiation polynomial

was applied to the data before a SARIMA model

#(B) ®(B*) Y, =6(B)' 6(B*)"4, 8)



where D(B°) is the seasonal autoregressive polynomial

P is the degree of the seasonal autoregressive polynomial

O(B%) is the seasonal moving average polynomial

0] is the degree of the seasonal moving average
polynomial

Y, is the differenced process

was fitted to it.

The time-series models where fitted by standard methods using
autocorrelation and partial autocorrelation functions. Parameters were
estimated using least squares method with the PAR model and maximum
likelihood method with the ARMA and SARIMA models.

RESULTS

Different input variable combinations were tested for the NN model. Of
these the one with five inputs, viz: present inflow, gradient of the inflow
timeseries, present discharges from the small basins n:0 41 and n:o 71 and
Julian day, performed best. Models which used other variables, i.e. air
temperature and areal SWE performed clearly poorer.

Several structures were tested with the NN and of these the one with one
hidden layer and with ten neurons performed best. The results of the
training / parameter estimation (one-step-ahead predictions) are shown in
the Figure 2.

A comparison between the one-step-ahead predictions generated using
the best NN and the time-series models is shown in the Figure 3.

As can be seen from the Table 1. the time-series model of type II (the
ARMA model with deseasonalization) performed best among the time-
series models. The NN model performed as well as the best time-series

model (model II) but better than the other time-series models (models I and
I10).

DISCUSSION AND CONCLUSION

The NN model which was developed is not completely comparable with
the time-series models since it used external data while the time-series
models did not. The reason why the SWE did not perform well as an input
variable to the NN model was assumably due to the fact that the model was
trained to predict only one step ahead. The results suggest that the ARMA



model with deseasonalization is the best way to model an inflow time-
series.

Table 1. The MSE in training / parameter estimation and in the validation
periods in different cases.

The model MSE in the training/  MSE in validation
parameter estimation  period
period

Time-series type | 37 37

Time-series type 11 11 12

Time-series type II1 20 82

NN 11 12
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Figure 2. Comparisons of the one-step-ahead predictions in the
training/parameter estimation period. The x-axis starts at March 8.1967.
The figure on the left compares NN (black bars) and ARMA (white bars)
to the actual inflow (grey bars) and the figure on the right compares PAR
(black bars) and SARIMA (white bars) to the actual inflow (grey bars).
The scale of the y-axis is from zero to 600 m/s.
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This preliminary study indicates that it is possible to use artificial neural
networks succesfully in inflow forecasting. Due to the smooth behavior of
the inflow time-series in this case, a short-term forecasting model was
relatively easy to develop and this seems to be one of its main benefits.
The results seem to indicate, that NNs are comparable to some advanced
time-series models in inflow forecasting.
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Figure 3. Successive one-step-ahead predictions in years 1970, 1985,
1986, and 1987 respectively. The x-axis starts each year at March 8th. The
figure on the left compares NN (black bars) and ARMA (white bars) to the
actual inflow (grey bars) and the figure on the right compares PAR (black
bars) and SARIMA (white bars) to the actual inflow (grey bars). The scales
of the y-axes are from zero to 600, 500, 500, and 450 m*/s respectively.
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